Сущность изобретения
Страница 3

Таким образом, предлагаемое устройство обеспечивает благодаря кавитации высококачественную обработку жидкого топлива, в том числе его низкосортных высоковязких типов и тем самым обеспечивает уменьшение количества вредных выбросов в атмосферу. Благодаря тому, что кавитация возникает при относительно небольшом перепаде давления и относительно высоком давлении на выходе из устройства, предлагаемое устройство обеспечивает снижение эгнергозатрат при обработке жидкого топлива при относительно высоких значениях давления топливоподачи в системе.

Целесообразно для придания потоку жидкого топлива вращательного движения в патрубке подачи жидкого топлива установить винтовую вставку. Благодаря этой вставке подаваемая жидкость дополнительно перемешивается перед поступлением в ультразвуковой струйный излучатель, что еще больше повышает качество обработки топлива.

В дальнейшем изобретение поясняется подробным описанием примера его осуществления со ссылками на прилагаемые чертежи, на которых: на фиг. 1 - общий вид устройства, выполненного в соответствии с изобретением, в разрезе; на фиг. 2 поперечный разрез подвижной спирали струйного излучателя в увеличенном масштабе; фиг. 3 показывает камеру с переменным диаметром сечения, показанную на фиг. 1, в разрезе, в увеличенном масштабе; фиг. 4 - изображает зависимость между давлением, при котором возникает кавитация, и перепадом между давлением в потоке жидкости до струйного излучателя и давлением в потоке жидкости после струйного излучателя.

Как показано на фиг. 1, устройство для обработки жидкого топлива кавитацией в системе топливоподачи в соответствии с изобретением содержит цилиндрический корпус 1 с патрубком 2 для подачи жидкого топлива и патрубком 3 для его отвода. Патрубок 2 соединен с помощью гайки 4 с трубопроводом 5, сообщающимся с резервуаром для топлива (на фиг. не показан). В патрубке 2 установлена винтовая вставка 6. Коаксиально корпусу 1 установлен ультразвуковой струйный излучатель 7. Струйный излучатель 7 выполнен в виде двух спиралей Архимеда 7a и 7b, ориентированных вогнутыми сторонами одна к другой. При этом лопасти одной спирали 7a ориентированы в направлении, противоположном направлению лопастей спирали 7b. Спирали 7a и 7b установлены так, что лопасти одной спирали размещены между лопастями другой спирали и образуют каналы 7с прямоугольного сечения для прохождения обрабатываемого топлива. Одна из спиралей 7a расположена на основании 8. Поперечный разрез спирали 7a, размещенной на основании 8, изображен на фиг. 2. Основание 8 со спиралью 7a может перемещаться вдоль оси корпуса 1 (фиг. 1) по направляющим 9 с помощью регулировочной гайки 10 и втулки 11. Вторая спираль 7b размещена на крышке 12 корпуса 1 и закреплена неподвижно относительно корпуса 1 с помощью винтов 13. При перемещении спирали 7а относительно спирали 7b происходит изменение площади поперечного сечения каналов 7с. В крышке 12 выполнено отверстие для прохождения жидкого топлива.

Ультразвуковой струйный излучатель может быть выполнен и иначе, например так, как это описано в известном устройстве [SU, A, 1532083]

Устройство снабжено камерой 14 с переменным диаметром сечения, закрепленной, например, с помощью сварки на крышке корпуса 12 корпуса 1 так, что ось камеры 14 совпадает с осью струйного излучателя 7. Камера 14 имеет сужающуюся часть 14а, расширяющуюся часть 14b и минимальный диаметр do.

Минимальный диаметр do определяется в соответствии с предложенной авторами зависимостью. Для каждого струйного излучателя может быть построена зависимость давления, при котором возникает кавитация, от перепада между давлением в потоке до струйного излучателя и давлением в потоке после струйного излучателя. Зависимость для излучателя, используемого в предлагаемом устройстве, приведена на фиг. 4. По оси абсцисс отложены значения давления Р с, при котором происходит кавитация, в мегапаскалях, а по оси ординат - соответствующие значения перепада между давлением до струйного излучателя и давлением после струйного излучателя ΔP, также в мегапаскалях.

Из фиг. 4 видно, что кривая вначале имеет относительно пологую часть, а затем круто поднимается. Более пологая часть кривой соответствует относительно небольшим значениям перепада давления ΔP и соответственно относительно небольшим значениям давления Рс. Целесообразно выбирать значения давления Рс из значений, соответствующих этой относительно пологой части кривой. При определении параметров описываемой конструкции авторы приняли величину давления Рс, равной 0,2 МПа. Из графика на фиг. 4 видно, что при этом значении давления Рс перепад Р между давлением в потоке струйного излучателя и давлением в потоке в сужающейся части камеры после струйного излучателя составляет 0,6 МПа. Относительно небольшие значения перепада давления соответствуют относительно небольшим затратам энергии и обуславливают экономичность и эффективность работы устройства. Авторами установлено, что показанная на фиг. 4 зависимость определяется в первую очередь видом излучателя и очень мало зависит от вида используемого топлива. Поэтому такую зависимость можно использовать при выборе характеристик такого устройства для обработки различных видов топлива.

Страницы: 1 2 3 4 5

Определение производительности скрепера
м3/ч где: q- геометрическая вместимость ковша равна 10 м3 КВ- коэффициент использования рабочего времени 0,85 КР- коэффициент рыхления 1,3 КН- коэффициент наполнения 0,8 ТЦ- продолжительность цикла, с где: l1- длина пути заполнения равна 13 м U1- скорость движения при заполнении ковша равна 0,72 м/ ...

Выбор подвижного состава
Для перевозки данного груза по заданному маршруту используем автопоезд в составе автомобиля-тягача МАЗ-МАN 64226-020 6x4 и полуприцепа контейнеровоза МАЗ Колесная формула 6х4 Полная масса автопоезда, кг 44000 (48000) Полная масса автомобиля, кг 24100 (26500) Распределение полной массы на переднюю о ...

Определение требуемого модуля упругости
1. Интенсивность движения грузовых машин и автобусов на перспективы 20й год. N20=(Nзад*(100-% лег. авт.)/100, авт/сут N20=(800*(100-30)/100=560, авт/сут 2.Суммарная интенсивность движения на конец расчетного периода. Nсум(20)=(N20*M(10))/M(20) где м- коэффициент, показывающий увеличение интенсивнос ...